

There is an Electric

 Vehicle in your future!A talk for students of
St. Mary C. S. S.
From the EV Society
Northumberland Chapter By: Steve Lapp
Carbontakedown.com

45 Minutes:

- GHG Emissions
- What's happening?
- What to do?
- Electric Vehicles (EVs)
- Performance, Range and Charging
- Mining, Recycling
- The Electricity Grid

Our Home

50 km

The BIG Picture

- Up until 1960's environmental problems were widely seen as local or regional issues.
- Climate Change is different. It threatens the existence, health and safety of billions of people around the globe.
- No one country can solve climate change, a vast majority of the world's countries must cooperate.

Greenhouse Gases

$$
\begin{gathered}
\text { (GHGs) } \\
\text { and }
\end{gathered}
$$

Global Warming Climate Change

GHG

"Greenhouse Gas"

 a gas that reflects infrared radiation back to earth$$
\begin{aligned}
& 1 \text { Tonne of GHG } \\
& \text { That's the same as: }
\end{aligned}
$$

The greenhouse effect

Solar radiation passes through the clear atmosphere

Most radiation is absorbed by the earth's surface and warms it
e

Some of the infrared radiation passes through the atmosphere, and some is absorbed and re-emitted in all molecules. The effect of this is to warm the earth's surface and the lower atmosphere.

Infrared radiation is emitted from the earth's surface

The six GHG's and GWP (Global Warming Potential)

1/ Carbon Dioxide $\left(\mathrm{CO}_{2}\right)$
2/ Methane $\left(\mathrm{CH}_{4}\right)$

3/ Nitrous Oxide $\left(\mathrm{N}_{2} \mathrm{O}\right)$
4/ Hydrofluorocarbons (HFCs)
5/ Perfluorocarbons (PFCs)
6/ Sulfur hexafluoride (SF $)$

Carbon dioxide emissions and atmospheric concentration (1750-2020)

The Industrial Age

CARBON DIOXIDE OVER 800,000 YEARS

b) Change in global surface temperature (annual average) as observed and simulated using human \& natural and only natural factors (both 1850-2020)

$18501900 \quad 1950 \quad 2000 \quad 2020$

International Energy Agency (IEA)

Electricity and heat
IndustryTransportBuildings
Other

Industry

- Transport

Buildings
Other

Electric Vehicles

$$
\begin{aligned}
& (E V s) \\
& \text { are part of } \\
& \text { reducing } \\
& \text { GHGs }
\end{aligned}
$$

Ontario 2017159 Mt GHG/year

Ontario 11.3** GHG/person/year

Ontario electricity has very low GHG/kWh (0.013 to 0.044 kg GHG/kWh avg.*)

This means the electricity you use to charge your EV has a very, very low upstream GHG impact.

GHG Emissions

Using an EV is a

 huge GHGemissions reduction
for a family! (in ontario!)
14.0

A 1980 Unique Mobility
Electrek
A good effort, not a good car!

Lead acid batteries not up to task in distance or economics.

Battery Electric Vehicle

Plug-In Hybrid Electric Vehicle

0 to 100 kph Acceleration Times
769 HP + 3 electric motors!

Range and Price

2022 BEV

(100\% Electric)

49 +/Models

100\% Battery Electric Vehicles	Range (km)	Price in \$1000's inc. del.	MSRP (plugndrive) 1000s includes del
Lucid	836	106.0	\$106,000
Mercedes EQE	660	100.0	\$100,000
Tesla Model S LR	652	122.0	\$121,990
Tesla Model S Plaid	637	170.0	\$169,990
Tesla Model X Plaid	597	160.0	\$159,990
Mercedes EQS	570	146.2	\$146,200
Tesla Model 3 LR AWD	568	65.0	\$64,990
Tesla Model X LR	560	133.0	\$132,990
Tesla Model Y LR AWD	531	75.0	\$74,990
Tesla Model 3 Perf AWD	507	75.0	\$74,990
Mustang Mach E California Rte 1	491	66.6	\$66,590
Tesla Model Y Perf	488	84.0	\$83,990
Mustang Mach E Ext Range	483	68.6	\$68,590
Nissan Ariya 4WD LR	482	62.1	\$62,050
Cadillac Lyric	482	77.0	\$76,950
Kia EV6 First Edition	480	74.2	\$74,200
BMw i4	475	57.0	\$56,990
BMw ix	475	92.0	\$91,990
Mustang Mach E EXT Range AWD	435	72.1	\$72,090
Kia EV6	430	69.7	\$69,654
Polestar 2 2WD	427	51.8	\$51,800
Tesla Model 3 SR Plus	423	52.0	\$56,380
Mustang Mach E GT Perf	418	85.1	\$85,090
Chevrolet Boit	417	35.7	\$40,098
Hyundai Kona EV	415	41.2	\$45,651
Polestar 2 AWD	401	58.8	\$58,800
Hyundai loniq5 AWD LR	400	57.6	\$62,049
vW ID4 Pro	400	42.4	\$46,780
Chevrolet EUV	397	37.7	\$42,098
vW ID4 AWD Pro	386	47.4	\$51,780
Kia Niro EV	385	42.5	\$46,929
Kia Soul EV Limited	383	49.5	\$53,929
Jaguar I-PACE (CO)	377	102.6	\$102,626
Mustang Mach E SR	370	52.6	\$52,590
Nissan Leaf S Plus	363	37.7	\$42,174
Volvo C40 Recharge	359	74.9	\$74,900
Audi e-tron	357	89.2	\$89,150
Hyundai loniq5 Essential	354	42.6	\$47,049
Audi Q4 e-tron	351	62.5	\$62,500
Audi Q4 Sportback e-tron	351	70.2	\$70,150
Porsche Taycan 4 Cross Turismo	346	121.4	\$121,400
Mustang Mach E SR AWD	340	56.1	\$56,090
Volvo XC40	335	63.1	\$63,070
Porsche Taycan S Cross Turismo	325	219.5	\$219,500
Nissan Ariya 2WD Standard	321	52.1	\$52,050
Hyundai IONIQ EV	274	36.3	\$40,726
Kia Soul EV Premium	248	40.5	\$44,929
BMW 13	246	40.5	\$44,950
Nissan Leaf Sv	240	35.4	\$39,874
Mini Cooper SE 3 Door	177	34.5	\$38,956

Seasonal Range Change

- Energy consumption increases with speed ${ }^{2}$
- COLD!! - cold grease in bearings, harder rubber tires, dense air and lowered battery temperature plus heating impacts the range
- Worst winter day $\left(-25^{\circ} \mathrm{C}\right.$, snow) range at 100 kph could be $40-50 \%$ reduced.

Charging

Level 3 High

 Power
Level 1 and 2 at home or away, J1772

Level 1 or 2 - home charger
E (overnight for 400 kms , $\$ 8$ to $\$ 12$)

Level 3 - 50 to 350 kW (8 to 40 min for $200 \mathrm{~km}, \$ 4-\$ 9$)
$\stackrel{1}{\boldsymbol{E}} 0$
0
100
300
kW of Charger

Level 3 "Plugshare.com" screen grab

Impact of EVs on the Ontario Electricity Grid

1,000,000 EVs each
 going 20,000 km/year would create a

 2.5\% increase in Ontario's total 137 TWh of electricity generation
Operating Costs

Cumulative Fuel/Electrcity Cost

$$
\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
& & & & 10 \\
& \text { Years of Ownership }
\end{array}
$$

(\$1.45/litre, \$0.15/kWh, 20,000 km/year, 4\% infl.)

The Bigger Picture

Mining \&
 Manufacturing

Battery Materials

- 10 kg Lithium per EV = 5.3 billion batteries (1.3 B pass. vehicles world)*
- Other battery chemistries are in use, some require no conflict (Cobalt) minerals
Human Rights / Environmental Impact
- Fossil fuel extraction/use has climate change plus large scale human rights and environmental impacts
- Mining of battery minerals has negative impacts and they can be addressed with policy, laws and through activist pressure and corporate action - all happening
- Virtually every EV maker has ethical supply chain policies
- Recycling being developed in many places

Finally

- EVs are a key technology to address Greenhouse Gas Emissions and the climate crisis
- Most EVs have great acceleration!
- EVs in Ontario lower your family's GHG emissions significantly
- Basic EVs have similar ownership cost to equivalent fossil fuel cars
- Long distance travel entirely feasible
- Better to cycle or walk if you can!

Thank you for your attention. Questions? lappstve@kos.net Carbontakedown.com

Plus $\$ 1000$ to $\$ 1500$ one time $\$$ for a charger at home

