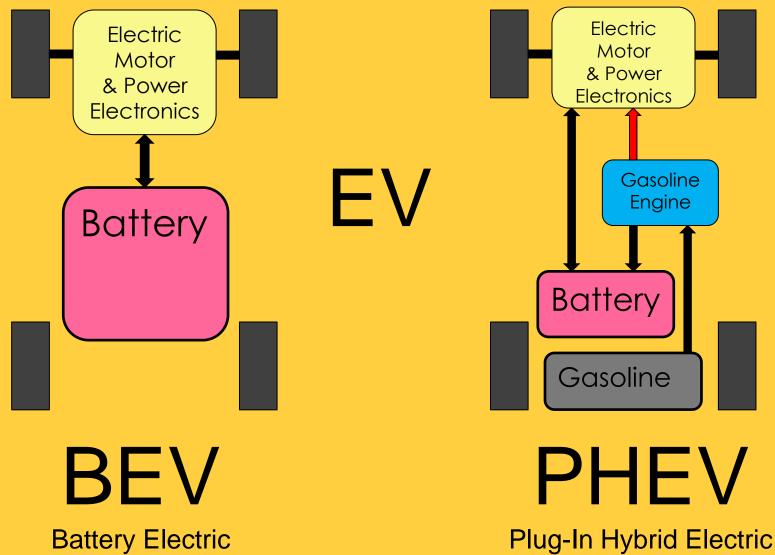
Electric Vehicles (EVs)

A presentation for the ESET 441 Photovoltaics Class

Steve Lapp P.Eng. M.Sc. Former Professor of Energy Systems Engineering Technology at St. Lawrence College

Carbontakedown.com


40 Minutes

You and EVs

- Greenhouse Gas Emissions and EVs
- Available Vehicles
- Range
- Charging
- Batteries
- Economics

EVs and the World

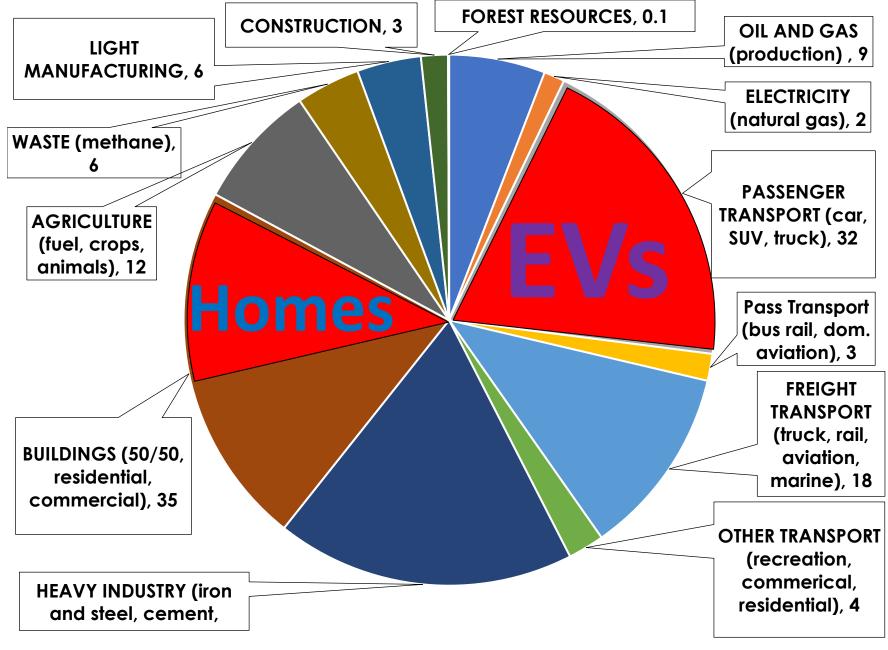
- The Electricity Grid
- Manufacturing Impacts
- Your Questions

Vehicle

Vehicle

Gasoline Vehicles

- upstream emissions
- mining, extraction
- **CO**₂
- CO
- nitrogen oxides
- ozone
- hydrocarbons (unburned fuels)
- brake dust


EVs

- no tailpipe emissions
- what electricity source?
- less brake dust

Ontario 2017 159 Mt GHG/year

Ontario's generation mix of hydro, nuclear, wind, solar and natural gas allows an EV in Ontario to have a very, very low GHG impact

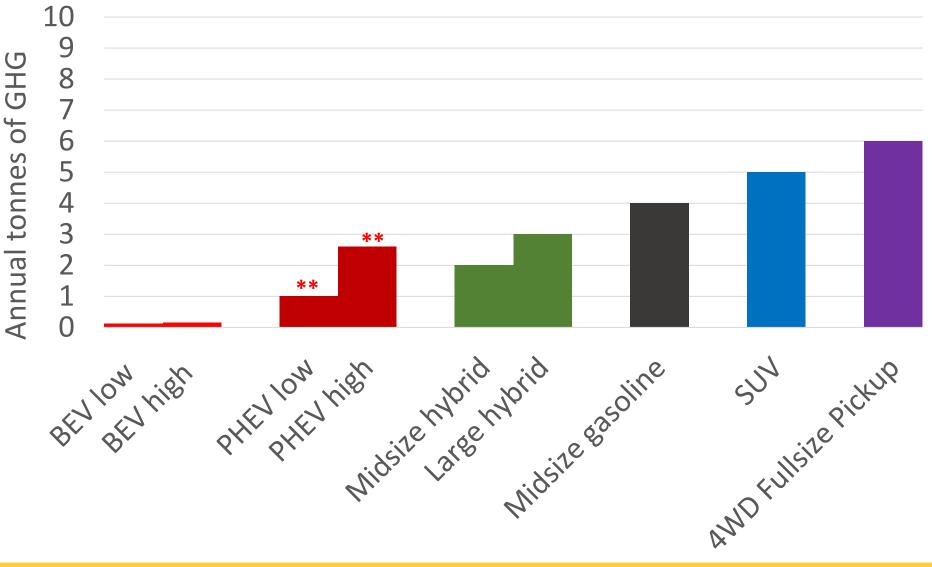
0.013 to 0.044 kg GHG/kWh*

*Toronto Atmospheric Fund 2019

messy)

Total 9 - 23 t GHG/year EV: 0.07 t GHG/year

 2^{+}

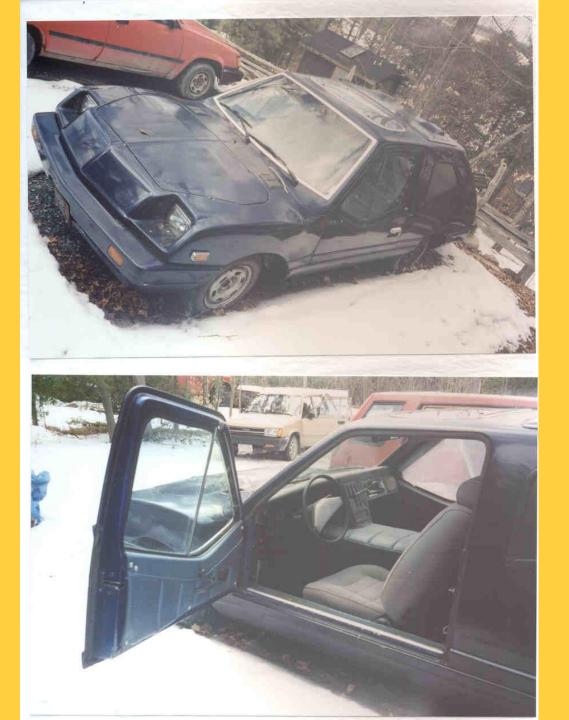

*20,000 km/year 4 - 12 † GHG/year

1-31 GHG/year

2-61 GHG/year

GHG/person (return)

GHG Emissions per Year by Vehicle Type


20,000 km per year * 0.04 kg CO₂e Ontario grid emissions ** depends on ratio of EV to gas operation EV History

A 1980 Unique Mobility Electrek

A good effort, not a good car!

Lead acid batteries not up to task in distance or economics.

April 2014 – 3 models

320,000 Sold /

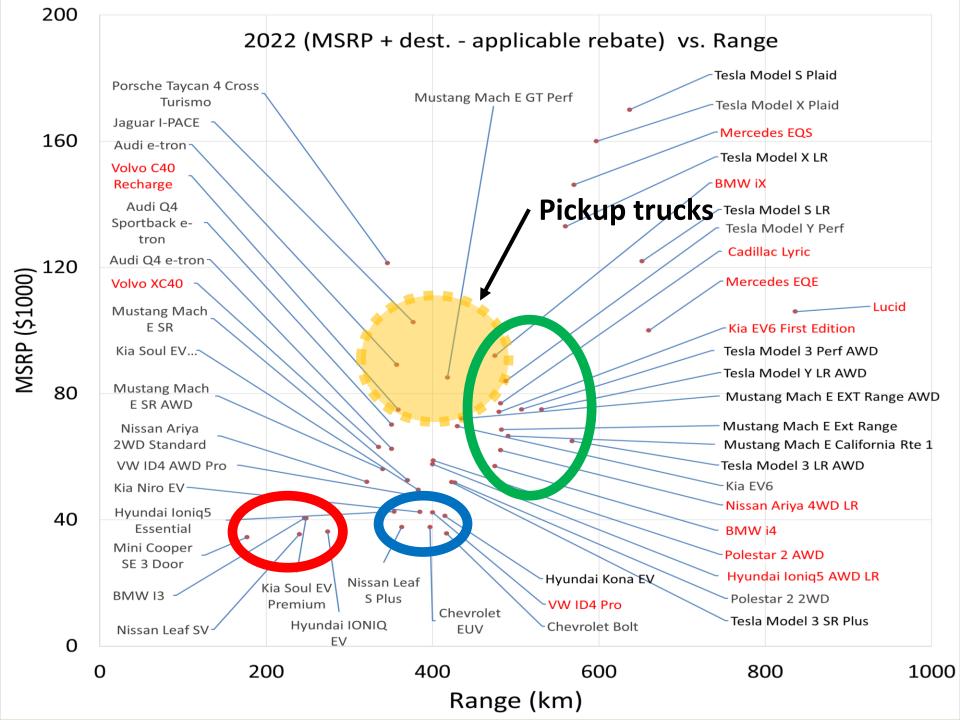
Forces Driving the EV Market

- Enabling technologies of high performance batteries and electronics
- Public and political forces with worldwide goal of zero GHG by 2050
- Regulations in many countries to reduce GHG from:
 - transportation
 - electricity generation
 - industrial processes

36

2021 BEV 40+ models

6,000,000 Projected


70,000 Plug In Vehicles in Ontario (IEA estimates 250 M Worldwide by 2030)

Range and Price

2022 BEV (100% Electric)

49 +/-Models

100% Battery Electric Vehicles	Range (km) Price in (km) \$1000's inc. del.		MSRP (plugndrive) 1000s includes del.
Lucid	836	106.0	\$106,000
Mercedes EQE	660	100.0	\$100,000
Tesla Model S LR	652	122.0	\$121,990
Tesla Model S Plaid	637	170.0	\$169,990
Tesla Model X Plaid	597	160.0	\$159,990
Mercedes EQS	570	146.2	\$146,200
Tesla Model 3 LR AWD	568	65.0	\$64,990
Tesla Model X LR	560	133.0	\$132,990
Tesla Model Y LR AWD	531	75.0	\$74,990
Tesla Model 3 Perf AWD	507	75.0	\$74,990
Mustang Mach E California Rte 1	491	66.6	\$66,590
Tesla Model Y Perf	488	84.0	\$83,990
Mustang Mach E Ext Range	483	68.6	\$68,590
Nissan Ariya 4WD LR	483	62.1	\$62,050
Cadillac Lyric Kia EV6 First Edition	482 480	77.0 74.2	\$76,950 \$74,200
			\$74,200
BMW i4	475	57.0	\$56,990
BMW iX	475	92.0	\$91,990
Mustang Mach E EXT Range AWD	435	72.1	\$72,090
Kia EV6	430	69.7	\$69,654
Polestar 2 2WD	427	51.8	\$51,800
Tesla Model 3 SR Plus	423	52.0	\$56,380
Mustang Mach E GT Perf	418	85.1	\$85,090
Chevrolet Bolt	417	35.7	\$40,098
Hyundai Kona EV	415	41.2	\$45,651
Polestar 2 AWD	401	58.8	\$58,800
Hyundai loniq5 AWD LR	400	57.6	\$62,049
VW ID4 Pro	400	42.4	\$46,780
Chevrolet EUV	397	37.7	\$42,098
VW ID4 AWD Pro	386	47.4	\$51,780
Kia Niro EV	385	42.5	\$46,929
Kia Soul EV Limited	383	49.5	\$53,929
Jaguar I-PACE (CO)	377	102.6	\$102,626
Mustang Mach E SR	370	52.6	\$52,590
Nissan Leaf S Plus	363	37.7	\$42,174
Volvo C40 Recharge	359	74.9	\$74,900
Audi e-tron	357	89.2	\$89,150
Hyundai loniq5 Essential	354	42.6	\$47,049
Audi Q4 e-tron	351	62.5	\$62,500
Audi Q4 Sportback e-tron	351	70.2	\$70,150
Porsche Taycan 4 Cross Turismo	346	121.4	\$121,400
Mustang Mach E SR AWD	340	56.1	\$56,090
Volvo XC40	335	63.1	\$63,070
Porsche Taycan S Cross Turismo	325	219.5	\$219,500
Nissan Ariya 2WD Standard	321	52.1	\$52,050
Hyundai IONIQ EV	274	36.3	\$40,726
Kia Soul EV Premium	248	40.5	\$44,929
BMW I3	246	40.5	\$44,950
Nissan Leaf SV	240	35.4	\$39,874
Mini Cooper SE 3 Door	177	34.5	\$38,956

Plug In Hybrids (PHEV) 2021/2022	100% EV Range (NRCAN)
Lincoln Aviator Grand Touring	34
Volvo S90 T8 AWD Recharge	34
BMW 530e	34
Land Rover RR PHEV	31
Volvo SV60 T8 AWD Recharge	31
Volvo XC60 T8 AWD	31
BMW 530e xDrive	31
Porsche Panamera 4E-Hybrid	31
Bently Bentaga	29
Audi A8 L 60 TFSie	29
BMW X3 xDrive 30e	29
Mini Cooper SE Countryman All4	29
Volvo XC 90 T8 AWD Recharge	29
BMW X3 xDrive30e	29
Subaru Crosstrek Hybrid AWD	27
Subaru Crosstek PHEV	27
BMW 745Le xDrive	27
Porsche Cayenne E-Hybrid	27
Porsche Panemara Turbo SE-Hybrid	27
Porsche Cayenne Turbo SE-Hybrid	24
Mercedes GLC350e	21

	100% EV
Plug In Hybrids (PHEV)	Range
2021/2022	(NRCAN)
DMW 2 Day	203
BMW i3 Rex	
Polestar 1	84
Honda Clarity PHEV	77
Toyota Rav4 Prime	68
Lexus NX 450h+ PHEV	61
Ford Escape PHEV	60
Fiat Chrysler Pacifica PHEV	51
BMW X5 xDrive45e	50
Hyundi Santa Fe PHEV	50
Hyundai IONIQ PHEV	47
Lincoln Corsair Grand Touring	45
Kia Optima PHEV	45
	40
Kia Niro PHEV	42
Audi A7 Sportback 55 TFSI e	42
Toyota Prius Prime	40
Mitsibushi Outlander PHEV	39
Audi Q5 55 TFSle	37
BMW 330e	37
Volvo S60 T8 AWD Recharge	35
Jeep Wrangler 4xe	35

2022 PHEV 40 +/-Models

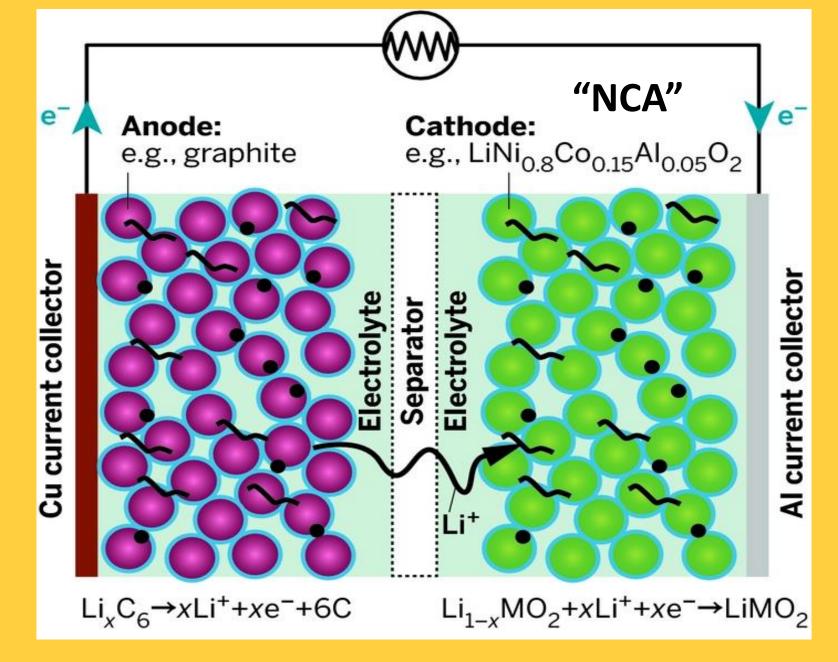
Range Change

- On mild spring and fall days range may be better than NRCAN on non-highway trips, "400" km may be 450 km
- kWh consumption increases with speed²
- BEV worst day (-25°C, snow) range at 110 kph could be 40 50% reduced.
- PHEV range 1/2 in winter, engine for heat
- A few percent a year range decrease due to battery aging
- Older model EVs, good value, less range

Batteries

Batteries

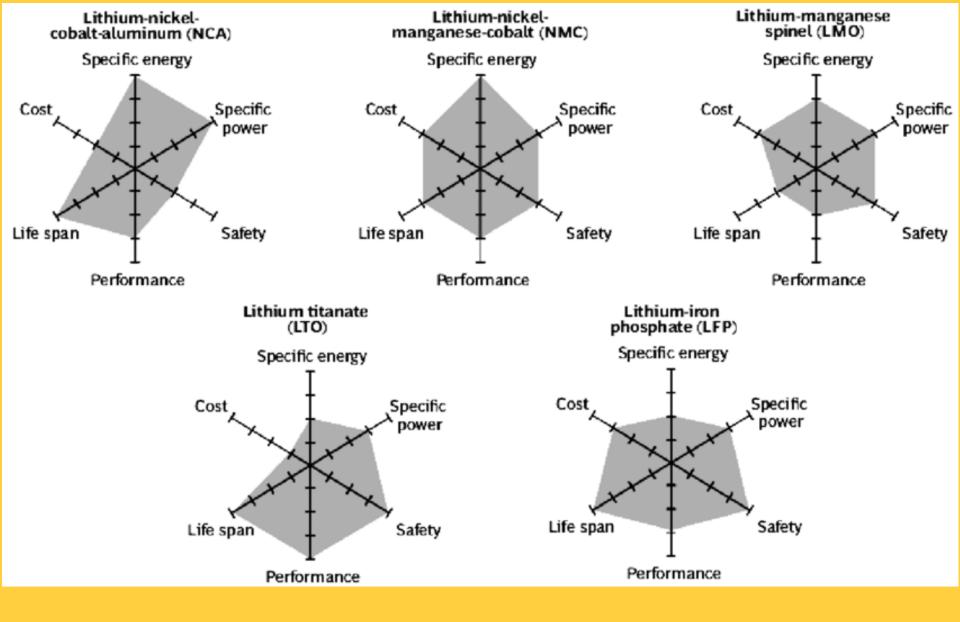
Lithium is the fundamental element in all current EV batteries. But Nickel, Cobalt Oxide, Manganese, Iron, Titanate and Aluminium also:


- EVs have from 24 kWh to 118 kWh battery capacity.
- Typical EV Energy Usage is from 15 kWh/100 km to 25 kWh/100 km
- Range = 66 kWh / (18 kWh/100 km) * 100 = 366.7 km

"Lithium" Batteries

Automotive EV Batteries:

Characteristics needed:


- High energy density kWh/kg
- High specific power kW/kg
- Good safety overcharge and accident safety
- Low cost
- Good cycle life 1000 to 3000 cycles

IF Ni, Co and Al are used in equal proportions, "NCA111"

Li-ion Technology Comparisons (Energy Application)

Parameter	LCO	LMO	NMC	NCA	LFP	LTO
Efficiency	90%	95%	93%	90 %	95%	97%
C Rates	C /4- 1 C	C/4-3C	C/4-2C	C /4-1 C	C/4- 2C	C/4-10C
DOD	80%	80%	90 %	80%	90 %	90%
Wh/Kg (ED)	1 60 -177	14 0 -158	18 0 -1 96	200-213	1 30 -14 3	75-84
Wh/L (ED)	3 8 0- 4 00	350-35 8	420-433	45 0- 4 66	270-282	175-18 6
W/Kg (PD)	30-50	30-60	4 0-60	4 0-60	25-45	600 -8 00
Cycle Life	8 00- 1 000	8 00 -1 000	3 8 00 -4 000	3300-3500	3 8 00 -4 000	75 00- 8 000
Chemistry	Li, Co	Li, Mn	Li, Mn, Ni, Co	Li, Ni, Co, Al	Li, Fe	Li, Ti, Mn
Toxicity	High	Medium	High	High	Low	Medium
Max. Temp.	45	55	55	55	55	65

Charging

LEVEL 3 (Petro Conada)

Ihr Max

Level 3 High Power "CCS"

Level 1 and 2 at home or away "J1772"

Other Connectors

Tesla

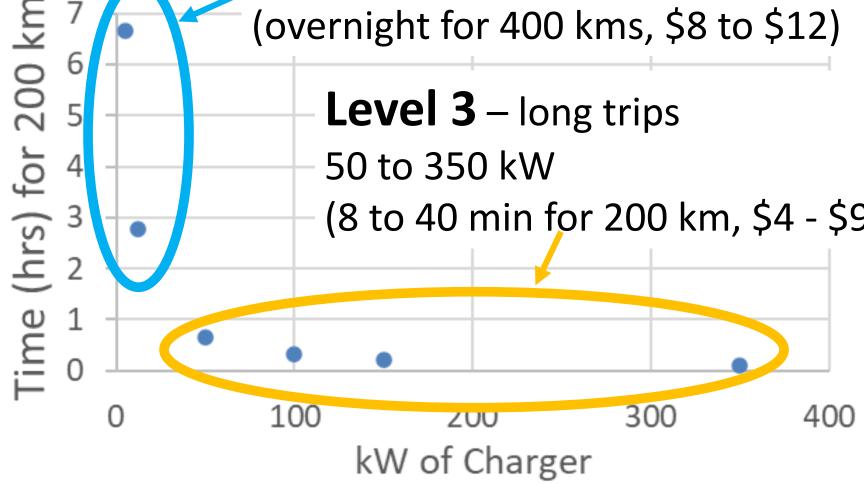
CHAdeMO Level 3 Leaf, Soul

SAE J1772 Level 2

CHAdeMO

Charging

- The vast majority of charging will be done at night at your residence, inside or outside (condos?)
- On trips of more than 300 400 km you'll use Level 3 for fee chargers
- On the longer trips you will need some apps to access all chargers (over 15 companies), but some take credit card taps
- PHEVs only have Level 2 charging

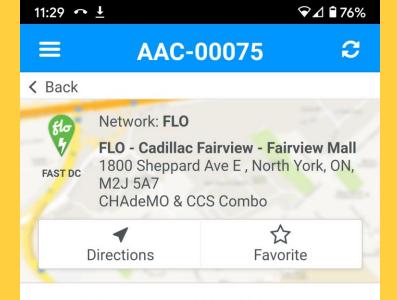

Charging time/km/\$

6

Level 1 or 2 - home charger (overnight for 400 kms, \$8 to \$12)

> **Level 3** – long trips 50 to 350 kW

(8 to 40 min for 200 km, \$4 - \$9)



Charging Curves

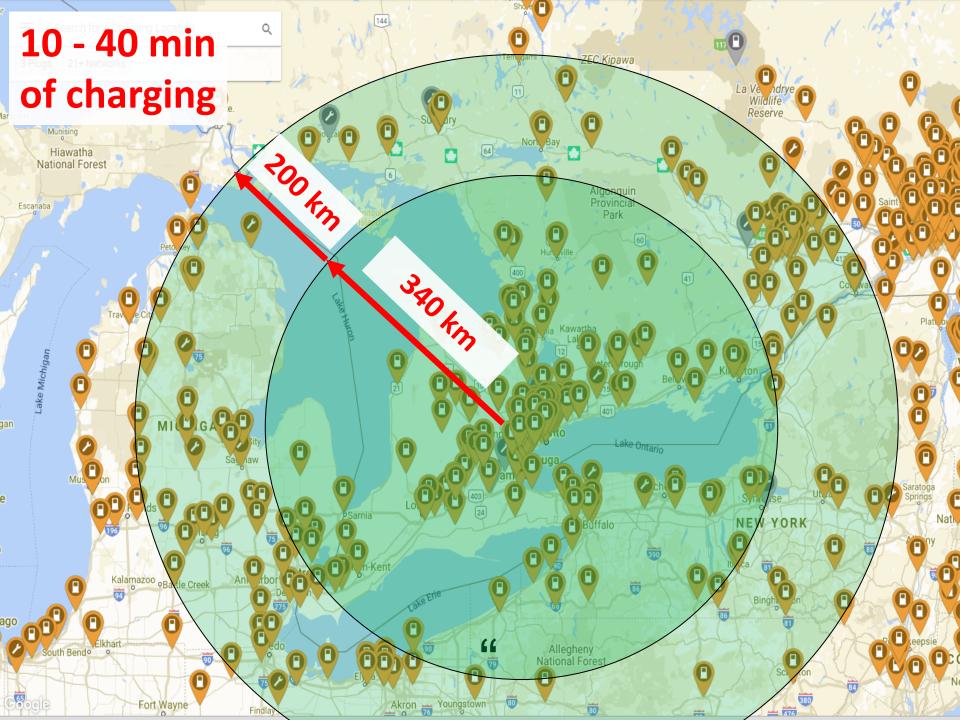
https://www.youtube.co m/watch?v=FgqCyy53C_g &t=301s

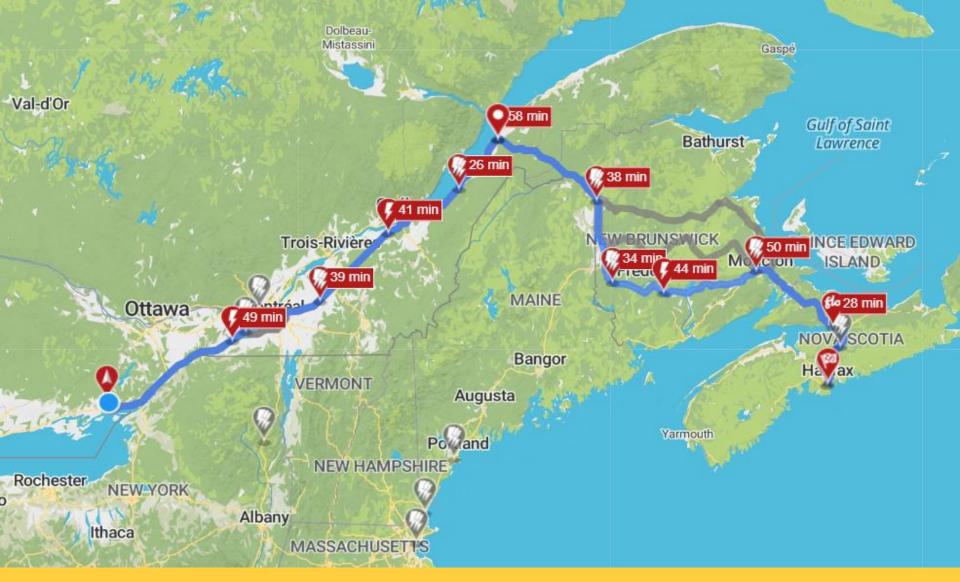
Battery Degradation

https://www.geotab.com/fl eet-managementsolutions/ev-batterydegradation-tool/

STATION AVAILABLE

\$20.00 (CAD) per hour

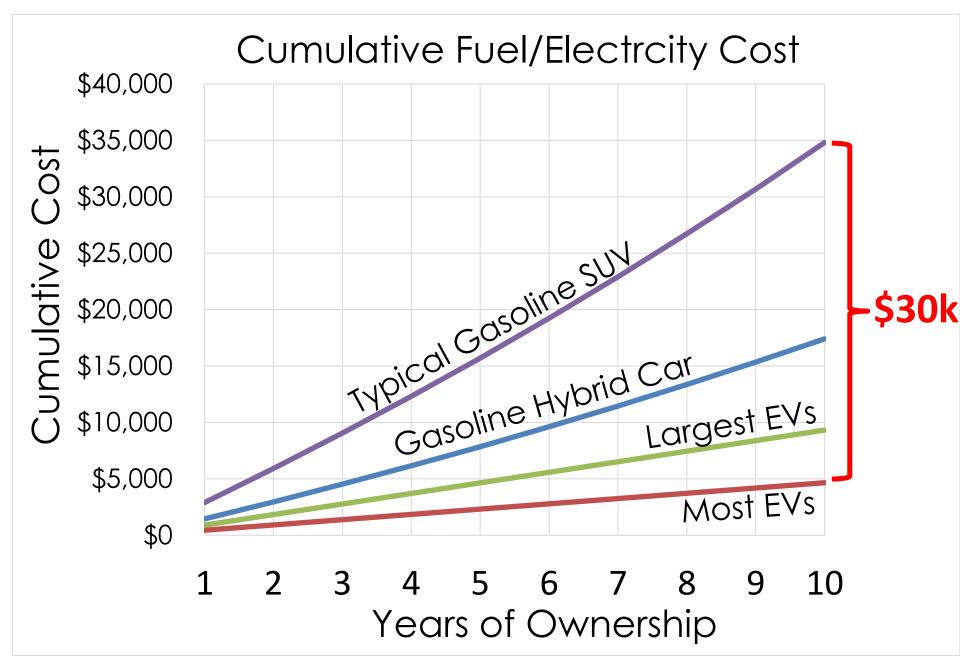

CHAdeMO connector


\$20.00 (CAD) per hour

SAE Combo connector

Start session

 \bigcirc


Trip Planning Software ("A Better Routeplanner")

3,000 to 4,000 kWh/year

(\$1.45/litre, \$0.15/kWh, 20,000 km/year, 4% infl.)

5 Year Net Vehicle Cost

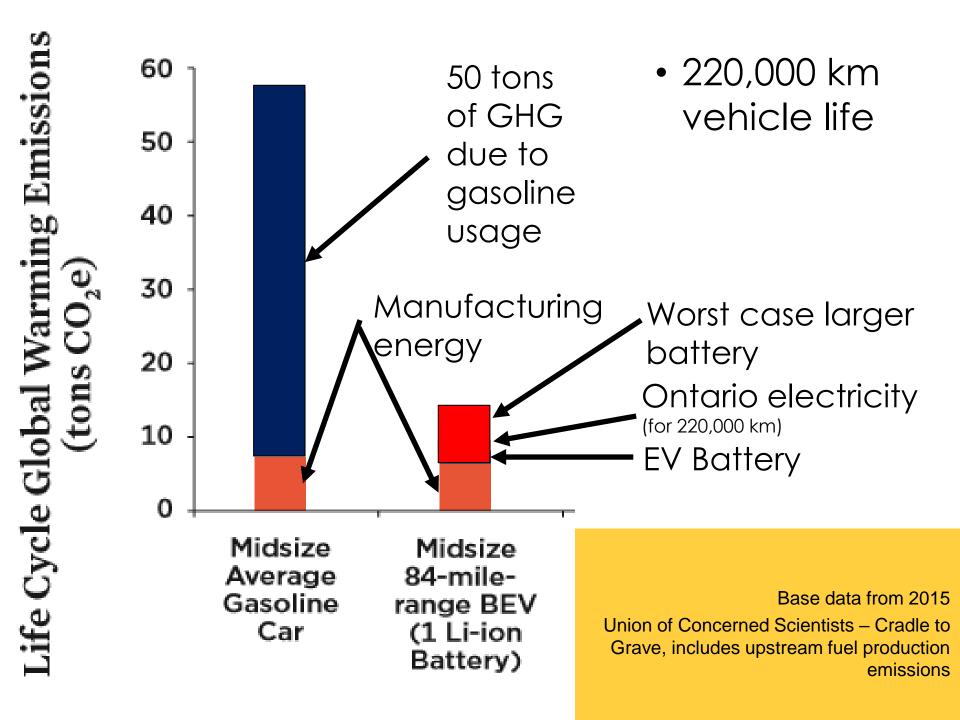
							1	
	Kona Gas		Prius		Kona EV		Chevy Bolt EV	
MSRP+Dest.	\$	26,154	\$	31,071	\$	45,651	\$	40,098
Тах	\$	3,400	\$	4,039	\$	5,935	\$	5,213
Federal rebate	\$	-	\$	-	\$	5,000	\$	5,000
Energy (Gasoline or Electricity)								
1st Year	\$	2,212	\$	1,260	\$	513	\$	513
2nd "	\$	2,300	\$	1,310	\$	533	\$	533
3rd "	\$	2,392	\$	1,363	\$	555	\$	555
4th "	\$	2,488	\$	1,417	\$	577	\$	577
5th "	\$	2,588	\$	1,474	\$	600	\$	600
5 year insurance	\$	4,000	\$	4,000	\$	5,000	\$	5,000
5 year maintenance	\$	5,000	\$	5,000	\$	2,500	\$	2,500
Trade in Value	\$	13,299	\$	15,800	\$	21,374	\$	16,251
Net Expense		\$37,236		\$35,135		\$36,402		\$30,140
5 Year GHG tonnes Emitted		18.2		10.4		0.68		0.68

Plus \$1000 to \$1500 one time \$ for a charger at home

The Bigger Picture

Impact of EVs on the Ontario Electricity Grid 1,000,000 EVs each going 20,000 km/year would create a 2.5%

increase in Ontario's total 137 TWh of electricity generation


The vast majority of charging can be programmed to be in off peak nighttime periods Batteries Manufacturing Recycling

Battery Materials

- 10 kg Lithium per EV = 5.3 billion batteries (1.3 B pass. vehicles world)*
- Other battery chemistries are in use, some require no conflict (Cobalt) minerals

Human Rights / Environmental Impact

- Fossil fuel extraction/use has climate change plus large scale human rights and environmental impacts
- Mining of battery minerals has negative impacts and they can be addressed with policy, laws and through activist pressure and corporate action – all happening
- Virtually every EV maker has ethical supply chain policies
- Recycling being developed in many places

Wrap-up

EVs and the World

- We humans must virtually eliminate the burning of fossil fuels, that is job one.....EVs address the existential nature of global warming and local pollution
- Global deployment of EVs using low carbon electricity will eliminate 1000's of millions of tonnes of GHG
- Automakers are working to source conflict free minerals and commercialize new battery chemistries, Cobalt already eliminated in some batteries.
- EVs, like all consumer purchases, have impacts, they do not solve every problem

EVs and you

- An EV in Ontario offers a dramatically reduced personal vehicle GHG footprint
- Basic EVs have similar ownership cost to equivalent fossil fuel cars
- Use your gas or electric car as little as possible, walk, bike, public transport
- Make it last as long as possible = less resource extraction
- Long distance travel entirely feasible, requires app use and time to charge

Thank you for your attention. Questions?

Carbontakedown.com